Degree equitable restrained double domination in graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

two-out degree equitable domination in graphs

an equitable domination has interesting application in the contextof social networks. in a network, nodes with nearly equal capacitymay interact with each other in a better way. in the societypersons with nearly equal status, tend to be friendly. in thispaper, we introduce new variant of equitable domination of agraph. basic properties and some interesting results have beenobtained.

متن کامل

restrained roman domination in graphs

a roman dominating function (rdf) on a graph g = (v,e) is defined to be a function satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. a set s v is a restrained dominating set if every vertex not in s is adjacent to a vertex in s and to a vertex in . we define a restrained roman dominating function on a graph g = (v,e) to be ...

متن کامل

Restrained domination in unicyclic graphs

Let G = (V,E) be a graph. A set S ⊆ V is a restrained dominating set if every vertex in V − S is adjacent to a vertex in S and to a vertex in V − S. The restrained domination number of G, denoted by γr(G), is the minimum cardinality of a restrained dominating set of G. A unicyclic graph is a connected graph that contains precisely one cycle. We show that if U is a unicyclic graph of order n, th...

متن کامل

Equitable Edge Domination in Graphs

A subset D of V (G) is called an equitable dominating set of a graph G if for every v ∈ (V − D), there exists a vertex u ∈ D such that uv ∈ E(G) and |deg(u) − deg(v)| 6 1. The minimum cardinality of such a dominating set is denoted by γe(G) and is called equitable domination number of G. In this paper we introduce the equitable edge domination and equitable edge domatic number in a graph, exact...

متن کامل

$k$-tuple total restrained domination/domatic in graphs

‎For any integer $kgeq 1$‎, ‎a set $S$ of vertices in a graph $G=(V,E)$ is a $k$-‎tuple total dominating set of $G$ if any vertex‎ ‎of $G$ is adjacent to at least $k$ vertices in $S$‎, ‎and any vertex‎ ‎of $V-S$ is adjacent to at least $k$ vertices in $V-S$‎. ‎The minimum number of vertices of such a set‎ ‎in $G$ we call the $k$-tuple total restrained domination number of $G$‎. ‎The maximum num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Graph Theory and Applications

سال: 2021

ISSN: 2338-2287

DOI: 10.5614/ejgta.2021.9.1.10